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Abstract
The n-dimensional (isotropic and non-isotropic) harmonic oscillator is studied
as a Wigner quantum system. In particular, we focus on the energy spectrum
of such systems. After briefly recalling the notion of a Wigner quantum
system, we show how to solve the compatibility conditions in terms of
osp(1|2n) generators, and also recall the solution in terms of gl(1|n) generators.
We then go on to describe a general method for determining a spectrum
generating function for an element of the Cartan subalgebra when working
with a representation of any Lie (super)algebra. Herein, the character of the
representation at hand plays a crucial role. This method is then applied to
the n-dimensional isotropic harmonic oscillator, yielding explicit formulae
for the energy eigenvalues and their multiplicities. This is done using
various interesting computational results from the field of symmetric and
supersymmetric Schur functions.

PACS numbers: 03.65.−w, 03.65.Fd, 02.20.−a

1. Introduction

Harmonic oscillator models are among the most studied both in classical physics and quantum
mechanics, due to the fact that they are analytically solvable and because of their numerous
applications [1]. In the quantum approach the position and momentum operators (q̂ and p̂

respectively) satisfy the canonical commutation relations [p̂, q̂] = −ih̄, and the model is
described by its Hamiltonian and the Heisenberg equations (in the Heisenberg picture). The
spectrum of the Hamiltonian is of paramount importance as it yields the values that might
come up when measuring the total energy of the system.
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Already in 1950 Wigner asked himself the question whether the canonical commutation
relations (CCRs) determine the equations of motion [2]. In that same paper he answered this
question by showing that requiring the compatibility between the Heisenberg and Hamilton
equations does not imply the CCRs between position and momentum operators. He showed
that there are (self-adjoint) operators p̂ and q̂ for which the Hamilton and Heisenberg equations
are equivalent (as operator equations) but for which it no longer holds that [p̂, q̂] = −ih̄. This
very fundamental generalization of the quantum harmonic oscillator is nowadays known as
the ‘Wigner quantum oscillator’. The deformation is characterized by a positive parameter
a and the CCRs are satisfied only when a = 1/2. It is now known that this parameter a
can in fact be viewed as the parameter characterizing a unitary irreducible representation
of the Lie superalgebra osp(1|2) [3]. This Wigner quantum oscillator is an example of a
‘Wigner quantum system’ (WQS). Such systems, introduced much later by Palev [3–5], refer
to a quantum mechanical system described by a Hamiltonian Ĥ (as a function of position
and momentum operators), for which the CCRs are not imposed, but instead for which the
equivalence of the Heisenberg equations and Hamilton’s equations is postulated (referred to
as the compatibility conditions).

WQSs belong to the field of non-standard quantization, or more precisely to the class
of models of non-commutative quantum systems. Nowadays there is quite some interest in
such models, or more generally in theories with an underlying non-commutative geometry
[6–10]. The interest is not only purely theoretical, but also inspired e.g. by the prediction of
string theory that the geometry of space becomes non-commutative at very small distances
[11]. In this context, a WQS has the advantage that deformations of commutation relations
are not put in ‘by hand’, by inserting some extra deformation parameter. In contrast, in a
WQS the non-commutativity (or deformation of the CCRs) simply follows from some other
first principles, namely the earlier mentioned compatibility conditions.

Among the quantum systems that have been studied as a WQS, we mention [12–15]. Most
attention went to multi-dimensional (isotropic) oscillators as WQS [5, 16–19], and to linear
chains of one-dimensional harmonic oscillators coupled by a nearest neighbour interaction
[20, 21]. In the last example, a solution to the so-called compatibility conditions, expressing
the equivalence of the Hamilton and the Heisenberg equations, was given in terms of the Lie
superalgebra gl(1|n), for which unitary irreducible representations are known.

Quite recently, the paraboson Fock space for the Lie superalgebra osp(1|2n) was
constructed [22]. This is a lowest weight representation characterized by a positive parameter
p (subject to some conditions) and we will denote these representations as V (p). In [22],
an explicit basis for the representation space is given, along with the matrix elements of the
representation. The characters and some character formulae are also given. The construction
of this representation made it worthwhile to go and look for solutions of the compatibility
conditions of quantum systems in terms of generators of the Lie superalgebra osp(1|2n), which
is the main topic of this paper.

In this paper, we reconsider the isotropic and non-isotropic n-dimensional quantum
harmonic oscillator as a WQS. In section 2, we briefly review the fundamentals of WQSs
and explain how the compatibility conditions for the current system are derived. We then
give a new solution for the non-isotropic oscillator in terms of the odd generators of the Lie
superalgebra osp(1|2n) (or equivalently in terms on n pairs of paraboson operators). Apart
from this, there is a second solution of these compatibility conditions in terms of the Lie
superalgebra gl(1|n). This result is in fact an easy consequence of the results in [20].

Since Lie superalgebras on themselves do not give a suitable framework for studying the
behaviour of the operators in a WQS, one has to work with (unitary irreducible) representations
of these algebras. In section 3, we present the representations that are going to be used in this
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paper. In fact, we will only describe their characters (and some character formulae) as this is
all that is needed in order to derive the spectrum generating function. The characters of the
representations are expressed in terms of (supersymmetric) Schur functions.

In section 4, we consider the quite general problem of determining the spectrum of any
element of the Cartan subalgebra in a representation of a Lie (super)algebra. A spectrum
generating function, i.e. a formal power series in some variable, where the exponents give
the eigenvalues and the coefficients the multiplicity of the corresponding eigenvalue, is easily
obtained by performing a simple substitution in the character of the representation.

In the next section, we apply this technique to the osp(1|2n) solution of the compatibility
conditions of the n-dimensional isotropic harmonic oscillator (with frequency ω). We
immediately obtain that for any admissible value of p > 0 the representation V (p) yields a
countable infinite and equidistant spectrum with spacing h̄ω and ground level h̄ωnp/2. Also,
the degeneracies of the energy levels are seen to be polynomials in n. We then study the
spectrum more thoroughly for some specific values of p, and we see for instance that we
recover the known results for the canonical case, i.e. when p = 1. Furthermore, it is shown
that the multiplicities of the eigenvalues in the case when p ∈ {1, 2, . . . , n − 1} (non-generic
cases) may be determined in terms of the multiplicities for the case p > n − 1 (generic case).
Finally, the three-dimensional oscillator is considered as an example.

In section 6 the spectrum generating function technique is applied to the irreducible
covariant tensor representations of gl(1|n). These representations are less like the canonical
solution since they are finite dimensional. Nevertheless, also in this case the spectrum is
equidistant with spacing h̄ω, and the multiplicities of the different energy levels can again be
seen as polynomials in n.

2. The quantization procedure and some of its solutions

In this section, we briefly describe how to derive the compatibility conditions for the n-
dimensional harmonic oscillator and also give some of their solutions in terms of Lie
superalgebra generators. To be more specific, consider the Hamiltonian for an n-dimensional
harmonic oscillator with mass m and frequencies ωj (j = 1, . . . , n):

Ĥ = 1

2m

n∑
j=1

p̂2
j +

m

2

n∑
j=1

ω2
j q̂

2
j . (2.1)

Here, the position and momentum operators are given by q̂j and p̂j respectively. We shall treat
both the non-isotropic case (ωj ’s different) as the isotropic case (all ωj ’s equal). When treating
this system as a WQS, one no longer requires the CCRs between position and momentum
operators, but instead one requires the compatibility of the Hamilton and Heisenberg equations.
Expressing this compatibility yields the so-called compatibility conditions (CCs).

In this case, the Hamilton equations are

˙̂qj = ∂Ĥ

∂p̂j

= 1

m
p̂j , ˙̂pj = −∂Ĥ

∂q̂j

= −mω2
j q̂j , j = 1, . . . , n, (2.2)

while the Heisenberg equations are

˙̂qj = i

h̄
[Ĥ , q̂j ], ˙̂pj = i

h̄
[Ĥ , p̂j ], j = 1, . . . , n. (2.3)

The compatibility conditions are thus

[Ĥ , q̂j ] = −i
h̄

m
p̂j , [Ĥ , p̂j ] = ih̄mω2

j q̂j , j = 1, . . . , n. (2.4)
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One then typically introduces the following linear combinations of the unknown operators q̂j

and p̂j :

a∓
j =

√
mωj

2h̄
q̂j ± i√

2mh̄ωj

p̂j , j = 1, . . . , n. (2.5)

The Hamiltonian has the following easy expression in terms of the operators a±
j :

Ĥ = h̄

2

n∑
j=1

ωj

(
a+

j a−
j + a−

j a+
j

) = h̄

2

n∑
j=1

ωj

{
a+

j , a−
j

}
. (2.6)

It is now easy to verify that the compatibility conditions (2.4) are equivalent with⎡
⎣ n∑

j=1

ωj

{
a+

j , a−
j

}
, a±

k

⎤
⎦ = ±2ωka

±
k , k = 1, . . . , n. (2.7)

Finally, due to the fact that the position and momentum operators are self-adjoint, one has that

(
a±

j

)† = a∓
j , j = 1, . . . , n. (2.8)

So in conclusion, solving the compatibility conditions amounts to finding operators a±
j

(j = 1, . . . , n), acting in some Hilbert space, that satisfy equations (2.7), subject to (2.8).
Note that the a±

j , in general, do not satisfy the usual boson commutation relations, since the
CCR’s are not required.

In a sense, (2.7) can be considered as a generalization of the boson commutation relations.
These are now ‘triple commutation relations’, which are automatically satisfied for ordinary
boson operators. More general solutions of (2.7) can be found by means of Lie superalgebra
generators.

The osp(1|2n) solution. One class of solutions follows by identifying the operators a±
j

with generators of the Lie superalgebra osp(1|2n), or equivalently, with paraboson operators.
Indeed, consider a system consisting of n pairs of paraboson operators whose defining relations
are given by [{

b
ξ

j , b
η

k

}
, bε

l

] = (ε − ξ)δjlb
η

k + (ε − η)δklb
ξ

j , (2.9)

where j, k, l ∈ {1, 2, . . . , n} and η, ε, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the
algebraic expressions ε − ξ and ε − η). It is known that the Lie superalgebra generated by the
odd elements b±

j (j = 1, . . . , n) subject to the relations (2.9) is in fact the orthosymplectic
Lie superalgebra osp(1|2n) [23].

Using the triple relations (2.9), it is an easy verification that

a−
j = σjb

−
j , a+

j = σ ∗
j b+

j , with |σj |2 = 1 j = 1, . . . , n, (2.10)

indeed satisfies (2.7). Furthermore, the conditions
(
a±

j

)† = a∓
j lead to the relations

(
b±

j

)† = b∓
j

for the paraboson operators. So in the following, we shall work with osp(1|2n) representations
in which these conditions are automatically satisfied, namely the so-called paraboson Fock
spaces V (p).

Note that the algebraic form of the Hamiltonian is as follows:

Ĥ = h̄

2

n∑
j=1

ωj

{
a−

j , a+
j

} = h̄

2

n∑
j=1

ωj

{
b−

j , b+
j

} = h̄

n∑
j=1

ωjhj , (2.11)
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where the operators hj = {
b−

j , b+
j

}/
2 (j = 1, . . . , n) span the Cartan subalgebra of osp(1|2n)

(see [22] for a definition of osp(1|2n) in terms of the paraboson operators b±
j ).

The gl(1|n) solution. A second class of solutions for (2.7) can be given in terms of the Lie
superalgebra gl(1|n). In fact, equations which are equivalent to (2.7) have been encountered
before when treating a linear chain of coupled harmonic oscillators as a WQS [20]. After
introducing ‘normal coordinates’, the form of the Hamiltonian of such a chain is essentially
given by (2.1). This means that the solution of the CCs found in [20] carries over to this case.
We thus have the following solution in terms of odd gl(1|n) generators:

a−
j =

√
2|βj |
ωj

ej0, a+
j = sign(βj )

√
2|βj |
ωj

e0j , j = 1, . . . , n, (2.12)

with

βj = −ωj +
1

n − 1

n∑
k=1

ωk, j = 1, . . . , n. (2.13)

The frequencies are supposed to be such that the constants βj (j = 1, . . . , n) are non-zero.
Also, the e0j and ej0 are the odd generators of the Lie superalgebra gl(1|n). The fact that (2.12)
is indeed a solution of the CCs is easily checked using the commutation and anti-commutation
relations in gl(1|n):

[[eij , ekl]] = δjkeil − (−1)deg(eij ) deg(ekl )δilekj . (2.14)

The elements e0j and ej0 (j = 1, . . . , n) are the odd elements and hence have degree 1. All
other basis elements are even elements and have degree 0.

We are going to use the following ‘star-condition’ for gl(1|n) (corresponding to the real
form u(1|n)):

(e0j )
† = ej0.

This is equivalent to the conditions (2.8) for the operators a±
j provided all constants βj are

positive. Thus in the rest of this paper, we shall assume that the frequencies ωj are such that
all βj > 0 (j = 1, . . . , n), at least when we are working with the gl(1|n) solution. The unitary
irreducible representations of gl(1|n) then yield the appropriate spaces for our operators to act
in. On an algebraic level, it is easily verified that the Hamiltonian (2.6) is given by

Ĥ = h̄

⎛
⎝βe00 +

n∑
j=1

βjejj

⎞
⎠ ,

with β = ∑n
j=1 βj and βj given by (2.13). Note that the Hamiltonian is again an element of

the Cartan subalgebra of gl(1|n).

3. Some representations of osp(1|2n) and gl(1|n) and their characters

Since our goal is to study the spectrum of the Hamiltonian when acting in some Hilbert space,
we now introduce the representations we are going to use and in which the Hamiltonian acts.
This amounts to collecting some material on a class of representations of the Lie superalgebra
osp(1|2n), and of the Lie superalgebra gl(1|n).

A class of osp(1|2n) representations. For the osp(1|2n) solution, we are going to work with
the paraboson Fock space V (p), which is the unitary irreducible representation of osp(1|2n),
with lowest weight (p/2, p/2, . . . , p/2). The parameter p, which is sometimes called the

5
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order of the paraboson system and which characterizes the representation, is subject to certain
constraints. In [22], an explicit basis and the matrix elements of this representation were
constructed and also the weight structure (characters and character formulae) was given.
Recall also that for p = 1 the paraboson Fock space V (1) coincides with the ordinary boson
Fock space (so in that case the CCRs are satisfied). When p �= 1, we are dealing with
‘deformations’ of the CCRs. The main result concerning the unitarity and weight structure of
the representations V (p) is the following ([22], theorem 7):

Theorem 1. The osp(1|2n) representation V (p) with lowest weight
(

p

2 , . . . ,
p

2

)
is a unitary

irreducible representation if and only if p ∈ {1, 2, . . . , n − 1} or p > n − 1.
For p > n − 1, one has

char V (p) = (x1 · · · xn)
p/2∏

i (1 − xi)
∏

j<k(1 − xjxk)
(3.1)

= (x1 · · · xn)
p/2

∑
λ

sλ(x). (3.2)

For p ∈ {1, 2, . . . , n − 1}, the character of V (p) is given by

char V (p) = (x1 · · · xn)
p/2

∑
λ,
(λ)�p

sλ(x) (3.3)

where 
(λ) is the length of the partition λ.

In this theorem, sλ(x) stands for the Schur symmetric function [24], and although in (3.2)
no restriction on the length of the partitions is given, the sum is in effect over all partitions
of length at most n since sλ(x1, . . . , xn) vanishes if 
(λ) > n. The length of a partition is its
number of parts. This and all other notions involving partitions may for instance be found in
[24].

For our purposes, it is interesting to note that in the case when p ∈ {1, 2, . . . , n − 1}, the
character of the representation V (p) can also be written as follows [22]:

char V (p) = (x1 · · · xn)
p/2 E(0,p)∏

i (1 − xi)
∏

j<k(1 − xjxk)
, (3.4)

with

E(0,p) =
∑

η

(−1)cη sη(x1, . . . , xn), (3.5)

where the sum is over all partitions η of the form

η =
(

a1 a2 · · · ar

a1 + p a2 + p · · · ar + p

)
≡ (a1, a2, . . . , ar |a1 + p, a2 + p, . . . , ar + p) (3.6)

in Frobenius notation, and

cη = a1 + a2 + · · · + ar + r. (3.7)

The Frobenius notation is a special way of denoting partitions [24] related to the lengths
of the rows and columns in the Young diagram of the partition, counted from the diagonal.
In the current case, the partitions η are all those with a Young diagram of shape given in
figure 1. The number of terms in the numerator of (3.4) is 2n−p. This follows immediately
from the fact that sλ(x1, . . . , xn) vanishes identically if 
(λ) > n. The length of a partition η

given by (3.6) is given by 1 + a1 + p, hence a1 � n − p − 1. It is easily checked by induction

6
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a2a1

a1

a2

a3

p

p

p

a3

Figure 1. Typical shape of the Young diagram for the partition η, given by the Frobenius notation
(3.6) (illustrated here for r = 3).

that the number of partitions of the form η with a1 � k is given by 2k+1, since it is immediately
clear that the ai are a strictly decreasing sequence of non-negative integers.

Some interesting special cases of (3.5) are

E(0,1) =
∏

1�j<k�n

(1 − xjxk), (3.8)

and

E(0,n−1) = 1 − x1x2 · · · xn. (3.9)

These lead to

char V (1) = (x1 · · · xn)
1/2 1∏

i (1 − xi)
, (3.10)

and

char V (n − 1) = (x1 · · · xn)
(n−1)/2 (1 − x1x2 · · · xn)∏

i (1 − xi)
∏

j<k(1 − xjxk)
. (3.11)

A class of gl(1|n) representations. We now turn to the characters of the gl(1|n) representations
we are going to use. It is well known that the symmetric Schur functions are the characters
of the irreducible covariant tensor representations of gl(m). Berele and Regev showed that
the characters of irreducible covariant tensor representations of gl(m|n) are supersymmetric
Schur functions [25].

Let x = (x1, . . . , xm) and y = (y1, . . . , yn) be two sets of independent variables. The
complete supersymmetric functions hr(x|y), with r a non-negative integer, are defined as

hr(x|y) =
r∑

k=0

hr−k(x)ek(y), (3.12)

where h and e on the right-hand side denote the ordinary complete and elementary
symmetric polynomials respectively. One then has the following determinantal formula for
supersymmetric Schur polynomials indexed by a partition λ:

sλ(x|y) = det(hλi−i+j (x|y))1�i,j�
(λ). (3.13)

7
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F λ = with
λ = ((nm) + τ) ∪ η

τ = (2, 1, 1)
η = (3, 1, 1)

Figure 2. Example of partition for which the supersymmetric Schur polynomial will factorize. In
this case, we assume that m = 4 and n = 5. Note that λm = 5 � n = 5 � λm+1 = 3.

Formula (3.13) is the analogue of the Jacobi–Trudi formula for symmetric Schur functions.
However, there do exist a number of other formulae for the supersymmetric Schur polynomials.
One is a combinatorial formula in terms of supertableaux (just as there is a formula for
Schur polynomials in terms of tableaux), and from this combinatorial formula, one deduces
the following expansion of supersymmetric Schur polynomials in terms of ordinary Schur
polynomials ([24], section I.5, example 23):

sλ(x|y) =
∑
µ,ν

cλ
µνsµ(x)sν ′(y), (3.14)

where the coefficients cλ
µν are the Littlewood–Richardson coefficients [24, 26] (the coefficients

in the expansion of a product of two Schur functions as a linear combination of Schur functions).
They are non-negative integers and may be determined by a combinatorial rule, the so-called
Littlewood–Richardson rule. In (3.14), ν ′ denotes the conjugate partition of ν, i.e. the partition
whose Young diagram is the transpose of that of ν.

The polynomials sλ(x|y) are identically zero when λm+1 > n, so we are considering only
those partitions for which λm+1 � n. Supersymmetric Schur polynomials sλ(x|y) indexed by
such a partition are the characters of the irreducible covariant tensor representations of gl(m|n)

[25].
In the case when λm � n, there exists a particular convenient formula that expresses a

supersymmetric Schur polynomial as a product of two ordinary Schur symmetric polynomials
multiplied by the variables associated with the (m, n) rectangle in the upper left corner of the
Young diagram [27, 28]. Indeed, let λ = ((nm) + τ) ∪ η, then

sλ(x1, . . . , xm|y1, . . . , yn) = sτ (x1, . . . , xm)sη′(y1, . . . , yn)

m∏
i=1

n∏
j=1

(xi + yj ). (3.15)

In figure 2, this is illustrated for m = 4, n = 5.

4. Spectrum generating functions for Cartan subalgebra elements

Suppose we work with a Lie (super)algebra g with Cartan subalgebra h, and let the Cartan
subalgebra be spanned by the elements hj (j = 1, . . . , n). For some given constants αj , we
consider the element

C =
n∑

j=1

αjhj , (4.1)

8
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and our aim is to determine the spectrum (including degeneracies) of such elements C when
working in a particular representation R of g. The representation is supposed to be unitary and
irreducible. We also assume that the character of the representation is known:

char R =
∑

r

drxr =
∑

r1,...,rn

dr1,...,rn
x

r1
1 · · · xrn

n .

The character is a formal power series consisting of terms dr1,...,rn
x

r1
1 · · · xrn

n with (r1, . . . , rn)

a weight of the representation and with dr1,...,rn
the dimension of the corresponding weight

space. A method to turn the character of such a representation into a spectrum generating
function for C is common knowledge, but is not so easy to trace in the literature. So we briefly
outline it in this section.

Let r = (r1, . . . , rn) be a multi-index (weight) such that dr �= 0, then there exist dr linearly
independent basis vectors |m〉 of the representation for which hj |m〉 = rj |m〉 (j = 1, . . . , n)

and hence

C|m〉 =
⎛
⎝ n∑

j=1

αjhj

⎞
⎠ |m〉 =

⎛
⎝ n∑

j=1

αj rj

⎞
⎠ |m〉 = Cr|m〉.

The eigenvalues of C (not necessarily all different) are thus given by

Cr =
n∑

j=1

αj rj

for each weight r = (r1, . . . , rn). Let t be a new variable. If one performs the substitution

xj → tαj , (j = 1, . . . , n) (4.2)

in the character, then one gets

spec C =
∑

r1,...,rn

dr1,...,rn
tα1r1 · · · tαnrn =

∑
r

drt
Cr . (4.3)

Clearly, the different eigenvalues of C in this particular representation are read of as the
exponents of t. If all eigenvalues Cr are different, their multiplicities are given by the
coefficients dr in the character. It might happen, however, that not all eigenvalues Cr are
different. In that case, one should collect equal powers of t in spec C, and the coefficient of
tCr then gives the multiplicity of this particular eigenvalue.

To summarize, in order to find the spectrum of an element C of the form (4.1) in
the representation R, one has to perform the substitutions (4.2) in the character of R. The
eigenvalues are then read of as the exponents (of t), while their degeneracies are given by the
corresponding coefficients. So spec C, given by (4.3), is a spectrum generating function for
the operator C in the representation R.

5. Spectrum of the Hamiltonian in the osp(1|2n) solution

The purpose of this section is to study the spectrum of Ĥ in the unitary representations V (p)

of osp(1|2n), and more particularly to determine the spectrum generating function for Ĥ . In
particular, for p = 1, we should find back the spectrum of the canonical quantum oscillator.

9
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Following the technique of the previous section, constructing the spectrum generating
function is almost straightforward. The most interesting case is the isotropic oscillator, which
will get further attention.

Algebraic form of the Hamiltonian. As mentioned in section 2, the Hamiltonian of the system
is given by

Ĥ = h̄

2

n∑
j=1

ωj

{
a−

j , a+
j

} = h̄

2

n∑
j=1

ωj

{
b−

j , b+
j

} = h̄

n∑
j=1

ωjhj , (5.1)

where the operators hj = {
b−

j , b+
j

}
/2 (j = 1, . . . , n) span the Cartan subalgebra of

osp(1|2n). In this section, we shall pay particular attention to the isotropic case, with
ω1 = ω2 = · · · = ωn = ω. In that case, the expression for the spectrum generating
function simplifies a lot.

Energy levels in terms of Schur polynomials. In general, since all constants αj in (4.1) are
identical for the isotropic oscillator, one has to perform the following substitutions in the
character of V (p):

xj → th̄ω =: z, (j = 1, . . . , n) (5.2)

in order to obtain the spectrum generating function for Ĥ . This spectrum generating function
will be denoted by spec Ĥ . Whether p ∈ {1, 2, . . . , n − 1} or p > n − 1, the character can
always be written as

char V (p) = (x1 · · · xn)
p/2

∑
λ,
(λ)�
p�

sλ(x1, . . . , xn). (5.3)

(Note: the ceiling function is only necessary to take care of the cases n − 1 < p < n.) After
performing the substitutions (5.2), we will have specialized the Schur polynomials to

sλ(z, . . . , z) = z|λ|sλ(1, . . . , 1).

Here, we have used the fact that the Schur polynomial sλ(x1, . . . , xn) is homogeneous of degree
|λ|. There is a known expression for such specializations sλ(1, . . . , 1) of Schur polynomials
in terms of the contents and the hook lengths of the defining partition λ ([24], I.3, example 4):

sλ(1, . . . , 1) =
∏

(i,j)∈λ

n + c(i, j)

h(i, j)
, (5.4)

where c(i, j) = j − i and h(i, j) = λi + λ′
j − i − j + 1 is the content and the hook length

of (i, j) respectively. Alternatively, (5.4) is also the dimension of the gl(n) irreducible
representation labelled by the partition λ. Following Macdonald [24], we introduce the
following generalization of the binomial coefficients for any partition λ:(

X

λ

)
=

∏
(i,j)∈λ

X − c(i, j)

h(i, j)
. (5.5)

On the left of figure 3 the numerator of each factor in (5.5) is shown for a certain partition,
while on the right of that same figure the denominators (hook lengths) associated with each
block are shown.

For the specializations of the Schur functions one thus has

sλ(1, . . . , 1) =
∏

(i,j)∈λ

n + c(i, j)

h(i, j)
=

∏
(i,j)∈λ

n − c(j, i)

h(j, i)
=

(
n

λ′

)
. (5.6)

10
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X − 2 X − 3X − 1

X − 1X

XX + 1X + 2

X + 2

X

X + 1

X + 3

4 17 6

24

1

5

34

12

Figure 3. Illustration of the various factors of a generalized binomial coefficient.

It is easily checked that for λ = (k),(
X

(k)

)
= X

k

X − 1

k − 1
· · · X − k + 1

1
= (X − k + 1)k

k!
=

(
X

k

)
,

so that for each partition of length 1, the generalized binomial coefficient becomes an ordinary
binomial coefficient. The notation (a)k stands for the rising factorial or Pochhammer symbol:
(a)k = a(a + 1) · · · (a + k − 1) if k > 0 and (a)0 = 1.

Putting all of this together, we get for the spectrum generating function for the isotropic
oscillator:

spec Ĥ = znp/2
∑

λ,
(λ)�
p�
sλ(z, . . . , z) =

∑
k�0

∑
λ,|λ|=k,
(λ)�
p�

sλ(1, . . . , 1)th̄ω(np/2+k). (5.7)

From this, it is clear that we will have equidistant energy levels

E
(p)

k = h̄ω(np/2 + k), k = 0, 1, 2, 3, . . . (5.8)

with spacing h̄ω and with multiplicities (degeneracies)

µ
(
E

(p)

k

) ≡
∑

λ,|λ|=k,
(λ)�
p�
sλ(1, . . . , 1) =

∑
λ,|λ|=k,
(λ)�
p�

(
n

λ′

)
. (5.9)

From definition (5.5) it is clear that the generalized binomial coefficient
(
X

λ

)
is a polynomial

of degree |λ| in the variable X. This means that in general, the degeneracy (or multiplicity)
µ

(
E

(p)

k

)
of the kth energy level E

(p)

k is a polynomial of degree k in n. (Clearly the degree is
going to be at most k, and since the coefficient of n|λ| in (5.6) is positive, the degree is exactly
k.) Since the degeneracy µ

(
E

(p)

k

)
is in fact independent of p in the generic case, i.e. when

p > n − 1, we will drop the superscript (p) in this case.

The canonical solution (p = 1). The representation V (1) of osp(1|2n) is nothing but the
canonical solution of the harmonic oscillator model, i.e. the CCRs are satisfied in this case.
Application of the described technique should thus give the known result for the spectrum of
the Hamiltonian. In this case, there is a very simple expression for char V (1), namely (3.10).
Performing the substitutions (5.2) immediately yields

spec Ĥ = zn/2

(1 − z)n
= zn/2

∑
k�0

(
n + k − 1

k

)
zk =

∑
k�0

(
n + k − 1

k

)
th̄ω(n/2+k).

We thus see that we indeed have equidistant energy levels, with spacing h̄ω, and that the
ground energy level is given by h̄ωn/2. The multiplicity of the kth energy level is given by the

11
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binomial coefficient
(
n+k−1

k

)
, which is, as it should be, a polynomial of degree k in the variable

n. These results are of course not new, but they do coincide with known results [29–31].
The same result is also easily obtained from (5.9):

µ
(
E

(1)
k

) =
(

n

(k)′

)
= (−1)k

(−n

(k)

)
= (−1)k

(−n

k

)
=

(
n + k − 1

k

)
, (5.10)

where the following property of generalized binomial coefficients was used(
X

λ

)
= (−1)|λ|

(−X

λ′

)
,

together with the fact that for a partition of length 1, the generalized binomial coefficient
coincides with the classical binomial coefficient.

The case p = 2. Also when p = 2, i.e. for the representation V (2), the multiplicities of
each energy level can be determined explicitly even though there is no ‘closed form’ character
formula for this representation. Consider a partition (λ1, λ2) of length (at most) 2. We are
now going to use formula (5.6) to find a formula for s(λ1,λ2)(1, . . . , 1). This is easy, we just
have to consider three parts in the Young diagram of the partition: the first λ2 blocks on the
first row, the last λ1 − λ2 blocks on the first row, and the blocks on the second row. For each
of these three sets of blocks, it is easy to write down the contents on the hook lengths of the
blocks in it. Doing this and multiplying the result yields the following:

s(λ1,λ2)(1, . . . , 1) =
(

λ2∏
l=1

n + l − 1

λ1 + 2 − l

)(
λ1−λ2∏
l=1

n + λ1 − l

l

) (
λ2∏
l=1

n + l − 2

λ2 + 1 − l

)

= (n)λ2−1(n − 1)λ1+1(λ1 − λ2 + 1)

λ2!(λ1 + 1)!
.

It is interesting to note that this result is also valid when λ2 = 0 or even when λ is the empty
partition. It thus follows from (5.9) that

µ
(
E

(2)
k

) =
∑

λ,|λ|=k,
(λ)�2

sλ(1, . . . , 1) =
∑

λ1+λ2=k, λ1�λ2�0

s(λ1,λ2)(1, . . . , 1)

=
k∑

λ1=
 k
2 �

(n)k−λ1−1(n − 1)λ1+1(2λ1 − k + 1)

(k − λ1)!(λ1 + 1)!

=
k∑

λ1=
 k
2 �

f (λ1).

Now, f (λ1) is a hypergeometric term that is Gosper-summable [32], and indeed it is easy to
verify that

f (λ1) = g(λ1 + 1) − g(λ1),

with

g(λ1) = − (n)k−λ1(n)λ1

(k − λ1)!λ1!
.

The summation over f thus telescopes, and the multiplicity µ
(
E

(2)
k

)
is given by

µ
(
E

(2)
k

) = g(k + 1) − g

(⌈
k

2

⌉)
=

(n)k−
 k
2 �(n)
 k

2 �(
k − ⌈

k
2

⌉)
!
(⌈

k
2

⌉)
!
, (5.11)
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since g(k + 1) = 0. If we consider the even and odd cases separately, the expression (5.11)
simplifies even further:

µ
(
E

(2)
2k

) = (n)2
k

k!2
, and µ

(
E

(2)
2k+1

) = (n)2
k(n + k)

k!2(k + 1)
. (5.12)

This can also be written as in a form similar to the canonical case (5.10):

µ
(
E

(2)
2k

) =
(

n + k − 1

k

)2

, and µ
(
E

(2)
2k+1

) =
(

n + k − 1

k

)(
n + k

k + 1

)
. (5.13)

The generic case. We now turn our attention to the case where the representations V (p) are
generic, i.e. p > n − 1. In this case, a character formula is given by (3.1). After performing
the substitution (5.2), one gets as a spectrum generating function:

spec Ĥ = znp/2

(1 − z)n(1 − z2)(
n

2)
= znp/2

(1 − z)(
n+1

2 )(1 + z)(
n

2)

= znp/2
∑
k1�0

((
n+1

2

)
+ k1 − 1

k1

)
zk1

∑
k2�0

((
n

2

)
+ k2 − 1

k2

)
(−z)k2

=
∑
k�0

k∑
l=0

(−1)l
((

n+1
2

)
+ k − l − 1

k − l

)((
n

2

)
+ l − 1

l

)
th̄ω(np/2+k).

So, this again confirms that we have equidistant energy levels, with the ground energy level
given by h̄ωnp/2, and with spacing h̄ω. The multiplicity of the kth energy level is thus given
by

µ(Ek) =
k∑

l=0

(−1)l
((

n+1
2

)
+ k − l − 1

k − l

)((
n

2

)
+ l − 1

l

)

=
((

n+1
2

)
+ k − 1

k

)
2F1

( −k,
(
n

2

)
1 − k − (

n+1
2

);−1

)
(5.14)

where the summation was also written using a Gauss hypergeometric function. For n = 1, it
follows that µ(Ek) = 1, so one recovers the result of Wigner [2] who observed that the energy
levels for the one-dimensional oscillator only shift when using non-canonical solutions, but
remain non-degenerate [2]. Note that it is not immediately clear that (5.14) in fact defines a
polynomial of degree k in n.

Putting together (5.14) and (5.9), we can now express a sum of generalized binomial
coefficients as a sum of a product of two ordinary binomial coefficients:

∑
λ,|λ|=k

(
X

λ

)
=

k∑
l=0

(−1)l
((

X+1
2

)
+ k − l − 1

k − l

)((
X

2

)
+ l − 1

l

)
. (5.15)

The case p = n − 1. Another case that can be done explicitly is the case p = n − 1. A
character formula is then given by (3.11) and the spectrum generating function for the isotropic
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oscillator becomes

spec Ĥ = zn(n−1)/2 1 − zn

(1 − z)n(1 − z2)(
n

2)

= zn(n−1)/2(1 − zn)
∑
k�0

µ(Ek)z
k

= zn(n−1)/2

⎛
⎝∑

k�0

µ(Ek)z
k −

∑
k�n

µ(Ek−n)z
k

⎞
⎠ .

Hence, it is clear that the following holds for the multiplicities µ
(
E

(n−1)
k

)
:

µ(E
(n−1)
k ) =

{
µ(Ek) for k < n,

µ(Ek) − µ(Ek−n) for k � n.
(5.16)

The case p ∈ {1, 2, . . . , n − 1}. For p ∈ {1, 2, . . . , n − 1}, the character of V (p) can also be
written in the alternative form (3.4). The spectrum generating function is thus (we again use
the substitution (5.2)):

spec Ĥ = znp/2
∑

η

(−1)cη

(
n

η′

)
z|η| ∑

k�0

µ(Ek)z
k

= znp/2
∑
k,η

(−1)cη

(
n

η′

)
µ(Ek)z

k+|η|

= znp/2
∑
l�0

∑
k,η, k+|η|=l

(−1)cη

(
n

η′

)
µ(Ek)z

l.

Here, the partitions η are those of the form (3.6) and cη is given by (3.7). On the other hand,
we clearly have from (3.3) that the spectrum generating function is also given by

spec Ĥ = znp/2
∑
l�0

µ
(
E

(p)

l

)
zl,

so that in fact

µ
(
E

(p)

l

) =
∑

k,η, k+|η|=l

(−1)cη

(
n

η′

)
µ(Ek), l = 0, 1, 2, . . . (5.17)

with the convention that µ(Ek) = 0 for k < 0. The partitions η are still of the form (3.6).
Formula (5.17) thus gives in fact a way of determining the multiplicities µ

(
E

(p)

l

)
in terms of

the ‘generic’ multiplicities µ(Ek) with k � l.

Example: the case p = n− 2. We start by noting that
(
n

λ

) = 0 for any partition where λ1 > n.
If we have a partition η of the form (3.6), then η′

1 = 1 + a1 + (n − 2), meaning that
(

n

η′
)

has a
chance of being non-zero only when a1 � 1. It is now easy to enumerate all possible partitions
η:

η = (1, 0|n − 1, n − 2) cη = 1 + 2 = 3 |η| = 2n η = (2n)
(

n

η′
) = 1

η = (1|n − 1) cη = 1 + 1 = 2 |η| = n + 1 η = (2, 1n−1)
(

n

η′
) = n

η = (0|n − 2) cη = 0 + 1 = 1 |η| = n − 1 η = (1n−1)
(

n

η′
) = n

η = () cη = 0 |η| = 0 η = ()
(

n

η′
) = 1

.
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We thus have that

µ
(
E

(n−2)
l

) = µ(El) − nµ(El−n+1) + nµ(El−n−1) − µ(El−2n), (5.18)

again with the convention that µ(Ek) = 0 for k < 0.

The three-dimensional isotropic oscillator. In the case when n = 3, there are only three cases
to consider for the osp(1|6) solution: p > 2, p = 2 or p = 1. For the generic case p > 2, the
generating function for the multiplicities is simply

1

(1 − z)3(1 − z2)3
=

∑
k�0

µ(Ek)z
k,

and the online encyclopedia of integer sequences ([33], A038163) then gives a closed form
for the multiplicities:

µ(E2k) = 4k + 5

5

(
k + 4

4

)
and µ(E2k+1) = 4k + 15

5

(
k + 4

4

)
.

Note that these closed form expressions could also be obtained by putting n = 3 in the right-
hand side of (5.14), and performing a generalization of Kummer’s identity for hypergeometric
series [34]. When p = 2, we can use (5.12) or (5.13), yielding

µ
(
E

(2)
2k

) = (k + 1)2(k + 2)2

4
, µ

(
E

(2)
2k+1

) = (k + 1)(k + 2)2(k + 3)

4
,

or one can use (5.16), which after manipulation of the binomial coefficients yields the same
explicit result. Finally, for p = 1, one has

µ
(
E

(1)
k

) =
(

k + 2

k

)
= (k + 2)(k + 1)

2
.

Numerically, this gives the following:

p µ(E
(p)

0 ) µ(E
(p)

1 ) µ(E
(p)

2 ) µ(E
(p)

3 ) µ(E
(p)

4 ) µ(E
(p)

5 ) µ(E
(p)

6 ) µ(E
(p)

7 ) µ(E
(p)

8 ) µ(E
(p)

9 )

1 1 3 6 10 15 21 28 36 45 55
2 1 3 9 18 36 60 100 150 225 315
p > 2 1 3 9 19 39 69 119 189 294 434

Note how the multiplicity of the first two energy levels is unaffected by considering non-
canonical solutions. Also, from this table one can check (5.18) numerically for some values.

6. Spectrum of the Hamiltonian in the gl(1|n) solution

As already mentioned before, on an algebraic level, the Hamiltonian is given by

Ĥ = h̄

(
βe00 +

n∑
k=1

βkekk

)
,

with β = ∑n
k=1 βk and βk = −ωk + 1

n−1

∑n
l=1 ωl . When the oscillator is isotropic, however,

all βk’s are equal and given by

βk = ω

n − 1
;

15
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consequently

β = nω

n − 1
.

The representations of relevance are the unitary irreducible gl(1|n) representations. We
shall consider here only one class of such representations, namely the covariant representations
Vλ which are labelled by a partition λ satisfying λ2 � n. The character of such a representation
Vλ is given by the supersymmetric Schur function sλ(x1|y1, . . . , yn). So the first set of variables
consists of one variable only, while the second set consists of n variables. Formula (3.14)
reduces in this case to

sλ(x1|y1, . . . , yn) =
∑
µ,ν

cλ
µνsµ(x1)sν ′(y1, . . . , yn), (6.1)

while the Berele–Regev formula for partitions satisfying λ1 � n becomes

sλ(x1|y1, . . . , yn) = s(λ1−n)(x1)s(λ2,λ3,...)′(y1, . . . , yn)

n∏
j=1

(x1 + yj )

= x
λ1−n
1 s(λ2,λ3,...)′(y1, . . . , yn)

n∏
j=1

(x1 + yj ). (6.2)

The case λ1 � n (typical case). Formula (6.2) allows us to draw conclusions about the
spectrum of the Hamiltonian very easily. So, we start by concentrating on the case when the
partition λ is such that λ1 � n. In order to determine the spectrum generating function, we
have to perform the substitutions

x1 → th̄β = t
h̄ωn
n−1 =: zn, yj → th̄βj = t

h̄ω
n−1 =: z (j = 1, . . . , n). (6.3)

With these substitutions and using (5.6), the spectrum generating function becomes

spec Ĥ = zn(λ1−n)z|λ|−λ1

(
n

(λ2, λ3, . . .)

)
(zn + z)n

= z(n−1)(λ1−n)+|λ|(1 + zn−1)n
(

n

(λ2, λ3, . . .)

)

= th̄ω(|λ|/(n−1)+λ1−n)(1 + th̄ω)n
(

n

(λ2, λ3, . . .)

)
. (6.4)

From this, it is immediately clear that the ground energy level is given by

E
(λ)
0 = h̄ω

( |λ|
n − 1

+ λ1 − n

)
. (6.5)

Furthermore, we see that there are in fact n+1 different energy levels, equidistant with spacing
h̄ω, and hence the highest energy level is

E(λ)
n = h̄ω

( |λ|
n − 1

+ λ1

)
.

Also, from the binomial theorem, it is immediately clear that the multiplicity µ
(
E

(λ)
k

)
of the

kth energy level is given by

µ(E
(λ)
k ) =

(
n

k

)(
n

(λ2, λ3, . . .)

)
,

which is the product of an ordinary and a generalized binomial coefficient. In [21], it was
already shown that the multiplicity of the different energy levels in the representation V(p),
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Figure 4. An example of a horizontal 4-strip. The partition λ = (5, 4, 2, 2, 1) and ν = (5, 2, 2, 1).

with p � n, was in fact given by the binomial coefficients
(
n

k

)
, a fact recovered here, since the

generalized binomial coefficient involves the empty partition. Note also that the multiplicity
of the different energy levels does not depend on λ1 (as long as λ1 � n), but that λ1 does
influence the (height of the) ground level.

The general case. When λ1 < n, no nice factorization of the supersymmetric Schur function
sλ(x1|y1, . . . , yn) exists (the representation is then atypical), and hence we resort to using the
expansion (6.1), which is valid in general. Since the set of variables x is simply x1, this means
that in (6.1) the Schur function sµ(x1) vanishes unless µ = (r) for some non-negative integer
r. More in particular, we then have

s(r)(x1) = hr(x1) = xr
1 .

Also the Littlewood–Richardson coefficients are particularly easy in this case, see ([24],
section 5):

cλ
(r)ν =

{
1 if λ − ν is a horizontal r-strip

0 otherwise.
(6.6)

Let λ and ν be two partitions such that the Young diagram of ν is embedded in the Young
diagram of λ, or stated otherwise νi � λi , for all i. The set theoretic difference θ = λ − ν is
called a skew diagram. The skew diagram is called a horizontal strip if all θ ′

i � 1, or stated
otherwise, if the diagram of θ contains at most one block per column. Naturally, a horizontal
strip is a horizontal r-strip if it consists of exactly r blocks. Figure 4 gives an example.

The Littlewood–Richardson coefficients given in (6.6) are in fact equivalent with Pieri’s
rule [24]:

s(r)(x)sν(x) =
∑

λ

sλ(x), (valid for general x)

where the sum is over all partitions λ such that λ − ν is a horizontal r-strip. The expansion
(6.1) may hence be written as

sλ(x1|y) =
∑
r�0

xr
1

∑
ν

sν ′(y), (6.7)

where the sum is over all partitions ν such that λ − ν is a horizontal r-strip. Performing the
substitutions (6.3) yields the following spectrum generating function:

spec Ĥ =
∑
r�0

t
h̄ωnr
n−1

∑
ν

t
h̄ω|ν|
n−1

(
n

ν

)
=

∑
r�0

th̄ω(
|λ|

n−1 +r)
∑

ν

(
n

ν

)
, (6.8)

where the inner sum runs over all partitions ν such that λ− ν is a horizontal r-strip (and hence
|ν| = |λ| − r).
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This spectrum generating function allows us to determine the highest energy level. Indeed,
if θ = λ − ν is a horizontal strip, then clearly |θ | � λ1, since θ is contained in λ. For each
partition λ, there exists exactly one partition ν such that λ − ν is a horizontal λ1-strip, namely
the partition ν for which ν ′

j = λ′
j − 1 (j = 1, . . . , λ1). For this partition one will have

that
(
n

ν

)
> 0, which is the same as claiming that ν1 � n. This follows from the fact that

ν1 = λ2 � n. The highest energy level is thus given by

h̄ω

( |λ|
n − 1

+ λ1

)
.

From (6.8) one would be tempted to conclude that the ground level corresponds to the
level implied by r = 0. This is incorrect, however, since it may happen that the summation
over ν vanishes. Remembering that the generalized binomial coefficient

(
n

λ′
)

is in fact a
specialization of the symmetric Schur function sλ, see (5.6), it is clear that

(
n

λ

)
is a non-

negative integer whenever n is. This means that∑
ν

(
n

ν

)
= 0 ⇐⇒ ∀ν :

(
n

ν

)
= 0,

or stated otherwise, the summation vanishes if and only if each term vanishes. It is also
clear that the non-negative integer roots of a generalized binomial coefficient

(
x

λ

)
are exactly

{0, 1, . . . , λ1 − 1} (see figure 3). So, if for a particular r, all partitions ν for which λ − ν is
a horizontal r-strip are such that ν1 > n, then the inner summation in (6.8) will vanish. The
ground energy level is thus given by h̄ω(|λ|/(n − 1) + r∗), with

r∗ = min{r|∃ν : λ − ν is a horizontal r-strip and ν1 � n}.
Note that we have

r∗ =
{

0 if λ1 � n

λ1 − n otherwise.

Indeed, if λ1 � n, then taking ν = λ yields the horizontal 0-strip with ν1 � n. On the other
hand, if λ1 > n, then taking ν1 = n and νj = λj for j � 2 yields a horizontal (λ1 − n)-strip
with ν1 � n. This is in agreement with what was found using the Berele–Regev formula, see
(6.5).

It is also quite clear that all energy levels between the ground level and the most excited
level do in fact exist, and hence we are dealing with an equidistant spectrum with spacing
h̄ω (just as in the osp(1|2n) case). The number of different energy levels is now also easily
determined since it is given by

λ1 − r∗ + 1 = min{λ1, n} + 1. (6.9)

Writing the spectrum generating function in the following way:

spec Ĥ = th̄ω(
|λ|

n−1 +r∗)
min{λ1,n}∑

k=0

µ
(
E

(λ)
k

)
th̄ωk,

it is clear that

µ
(
E

(λ)
k

) =
∑

ν

(
n

ν

)
,

where the sum is over all partitions ν such that λ − ν is a horizontal (r∗ + k)-strip. One
striking difference with the osp(1|2n) solutions is that now the multiplicity of the ground
level, µ

(
E

(λ)
0

)
, is not 1. A similarity is that µ

(
E

(λ)
k

)
is a polynomial in the variable n. The
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last statement is true for n sufficiently large: in other words, one should think of λ as being
fixed, and n increasing. When n � λ1, r

∗ = 0, and then µ
(
E

(λ)
k

)
is a polynomial of degree

|ν| = |λ| − k in the variable n.
As an application, we consider the spectrum of the Hamiltonian in the representation

V(1p). According to (6.9), there will be only two different energy levels. For the multiplicities
we have

µ
(
E

(1p)
0

) =
∑

ν

(
n

ν

)
=

(
n

(1p)

)
= (−1)p

(−n

p

)
=

(
n + p − 1

p

)

and

µ
(
E

(1p)
1

) =
∑

ν

(
n

ν

)
=

(
n

(1p−1)

)
= (−1)p−1

( −n

p − 1

)
=

(
n + p − 2

p − 1

)
.

This is in agreement with what was found in [21], but there explicit knowledge of the
representation actions was used, whereas here we have only used the character of the
representation.

7. Conclusion

In this paper we have given a general method for determining the spectrum generating functions
associated with an element of the Cartan subalgebra of a Lie superalgebra g. These spectrum
generating functions are closely related to the character of the studied representations.

This method was used to study the energy spectrum of the n-dimensional isotropic
harmonic oscillator when viewed as a WQS. Two different solutions of the compatibility
conditions of this system were considered, one being related to the osp(1|2n) Lie superalgebra
and the other to the gl(1|n) Lie superalgebra. The spectrum generating functions involved
interesting specializations of Schur symmetric and supersymmetric functions. In both cases
the energy spectrum is equally spaced with spacing h̄ω. In the osp(1|2n) case, we considered
the representations V (p) and the energy spectrum is then countably infinite, and degeneracies
when p ∈ {1, 2, . . . , n − 1} (non-generic situation) may be determined in function of the
degeneracies in the case p > n − 1 (generic situation). In the gl(1|n) case, since we
considered the finite dimensional representations Vλ, the spectrum is of course finite. Also
here, one can speak of a generic case λ1 � n and non-generic cases λ1 < n. In the first
case, one may use the Berelev–Regev formula to easily determine the energy spectrum and
associated multiplicities.

It is, however, also possible to apply the method to study the spectrum of a linear
chain involving quadratic nearest neighbour interactions. Although one probably will end
up with more involved specializations of the Schur functions, it should still be possible to
deduce general findings about the energy spectrum. In particular, when considering chains
of harmonic oscillators as in [20], one could try to find out for which values of the coupling
constant c the spurious degeneracies occur. This could be part of future work.
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